Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 81: 167-181, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040111

RESUMO

Using captured CO2 and C1-feedstocks like formate and methanol derived from electrochemical activation of CO2 are key solutions for transforming industrial processes towards a circular carbon economy. Engineering formate and CO2-based growth in the biotechnologically relevant yeast Saccharomyces cerevisiae could boost the emergence of a formate-mediated circular bio-economy. This study adopts a growth-coupled selection scheme for modular implementation of the Reductive Glycine Pathway (RGP) and subsequent Adaptive Laboratory Evolution (ALE) to enable formate and CO2 assimilation for biomass formation in yeast. We first constructed a serine biosensor strain and then implemented the serine synthesis module of the RGP into yeast, establishing glycine and serine synthesis from formate and CO2. ALE improved the RGP-dependent growth by 8-fold. 13C-labeling experiments reveal glycine, serine, and pyruvate synthesis via the RGP, demonstrating the complete pathway activity. Further, we re-established formate and CO2-dependent growth in non-evolved biosensor strains via reverse-engineering a mutation in GDH1 identified from ALE. This mutation led to significantly more 13C-formate assimilation than in WT without any selection or overexpression of the RGP. Overall, we demonstrated the activity of the complete RGP, showing evidence for carbon transfer from formate to pyruvate coupled with CO2 assimilation.


Assuntos
Dióxido de Carbono , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Dióxido de Carbono/metabolismo , Glicina/genética , Glicina/metabolismo , Carbono/metabolismo , Formiatos/metabolismo , Serina/metabolismo , Piruvatos/metabolismo
2.
Nat Commun ; 14(1): 8490, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123535

RESUMO

One-carbon (C1) substrates, such as methanol or formate, are attractive feedstocks for circular bioeconomy. These substrates are typically converted into formaldehyde, serving as the entry point into metabolism. Here, we design an erythrulose monophosphate (EuMP) cycle for formaldehyde assimilation, leveraging a promiscuous dihydroxyacetone phosphate dependent aldolase as key enzyme. In silico modeling reveals that the cycle is highly energy-efficient, holding the potential for high bioproduct yields. Dissecting the EuMP into four modules, we use a stepwise strategy to demonstrate in vivo feasibility of the modules in E. coli sensor strains with sarcosine as formaldehyde source. From adaptive laboratory evolution for module integration, we identify key mutations enabling the accommodation of the EuMP reactions with endogenous metabolism. Overall, our study demonstrates the proof-of-concept for a highly efficient, new-to-nature formaldehyde assimilation pathway, opening a way for the development of a methylotrophic platform for a C1-fueled bioeconomy in the future.


Assuntos
Escherichia coli , Metanol , Escherichia coli/genética , Escherichia coli/metabolismo , Metanol/metabolismo , Formaldeído/metabolismo , Sarcosina , Frutose-Bifosfato Aldolase/metabolismo , Engenharia Metabólica
3.
Metab Eng ; 76: 97-109, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36731627

RESUMO

Ethylene glycol (EG) is a promising next generation feedstock for bioprocesses. It is a key component of the ubiquitous plastic polyethylene terephthalate (PET) and other polyester fibers and plastics, used in antifreeze formulations, and can also be generated by electrochemical conversion of syngas, which makes EG a key compound in a circular bioeconomy. The majority of biotechnologically relevant bacteria assimilate EG via the glycerate pathway, a wasteful metabolic route that releases CO2 and requires reducing equivalents as well as ATP. In contrast, the recently characterized ß-hydroxyaspartate cycle (BHAC) provides a more efficient, carbon-conserving route for C2 assimilation. Here we aimed at overcoming the natural limitations of EG metabolism in the industrially relevant strain Pseudomonas putida KT2440 by replacing the native glycerate pathway with the BHAC. We first prototyped the core reaction sequence of the BHAC in Escherichia coli before establishing the complete four-enzyme BHAC in Pseudomonas putida. Directed evolution on EG resulted in an improved strain that exhibits 35% faster growth and 20% increased biomass yield compared to a recently reported P. putida strain that was evolved to grow on EG via the glycerate pathway. Genome sequencing and proteomics highlight plastic adaptations of the genetic and metabolic networks in response to the introduction of the BHAC into P. putida and identify key mutations for its further integration during evolution. Taken together, our study shows that the BHAC can be utilized as 'plug-and-play' module for the metabolic engineering of two important microbial platform organisms, paving the way for multiple applications for a more efficient and carbon-conserving upcycling of EG in the future.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Plásticos/metabolismo , Etilenoglicol/metabolismo , Polietilenotereftalatos/metabolismo , Carbono/metabolismo
4.
Front Bioeng Biotechnol ; 11: 1091899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36726742

RESUMO

Microbial C1 fixation has a vast potential to support a sustainable circular economy. Hence, several biotechnologically important microorganisms have been recently engineered for fixing C1 substrates. However, reports about C1-based bioproduction with these organisms are scarce. Here, we describe the optimization of a previously engineered formatotrophic Escherichia coli strain. Short-term adaptive laboratory evolution enhanced biomass yield and accelerated growth of formatotrophic E. coli to 3.3 g-CDW/mol-formate and 6 h doubling time, respectively. Genome sequence analysis revealed that manipulation of acetate metabolism is the reason for better growth performance, verified by subsequent reverse engineering of the parental E. coli strain. Moreover, the improved strain is capable of growing to an OD600 of 22 in bioreactor fed-batch experiments, highlighting its potential use for industrial bioprocesses. Finally, demonstrating the strain's potential to support a sustainable, formate-based bioeconomy, lactate production from formate was engineered. The optimized strain generated 1.2 mM lactate -10% of the theoretical maximum- providing the first proof-of-concept application of the reductive glycine pathway for bioproduction.

5.
Elife ; 112022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35876664

RESUMO

Ammonium (NH4+) is essential to generate the nitrogenous building blocks of life. It gets assimilated via the canonical biosynthetic routes to glutamate and is further distributed throughout metabolism via a network of transaminases. To study the flexibility of this network, we constructed an Escherichia coli glutamate auxotrophic strain. This strain allowed us to systematically study which amino acids serve as amine sources. We found that several amino acids complemented the auxotrophy either by producing glutamate via transamination reactions or by their conversion to glutamate. In this network, we identified aspartate transaminase AspC as a major connector between many amino acids and glutamate. Additionally, we extended the transaminase network by the amino acids ß-alanine, alanine, glycine, and serine as new amine sources and identified d-amino acid dehydrogenase (DadA) as an intracellular amino acid sink removing substrates from transaminase reactions. Finally, ammonium assimilation routes producing aspartate or leucine were introduced. Our study reveals the high flexibility of the cellular amination network, both in terms of transaminase promiscuity and adaptability to new connections and ammonium entry points.


Nitrogen is an essential part of many of the cell's building blocks, including amino acids and nucleotides, which form proteins and DNA respectively. Therefore, nitrogen has to be available to cells so that they can survive and grow. In nature, some microorganisms convert the gaseous form of nitrogen into ammonium, which then acts as the nitrogen source of most organisms, including bacteria, plants and animals. Once cells take up ammonium, it is 'fixed' by becoming part of an amino acid called glutamate, which has a so-called 'amine group' that contains a nitrogen. Glutamate then becomes the central source for passing these amines on to other molecules, distributing nitrogen throughout the cell. This coupling between ammonium fixation and glutamate production evolved over millions of years and occurs in all organisms. However, the complete metabolic network that underlies the distribution of amines remains poorly understood despite decades of research. Furthermore, it is not clear whether ammonium can be fixed in a way that is independent of glutamate. To answer these questions, Schulz-Mirbach et al. used genetic engineering to create a strain of the bacterium E. coli that was unable to make glutamate. These mutant cells could only grow in the presence of certain amino acids, which acted as alternative amine sources. Schulz-Mirbach et al. found that enzymes called transaminases, and one called AspC in particular, were required for the cells to be able to produce glutamate using the amine groups from other amino acids. Notably, Schulz-Mirbach et al. showed that AspC, which had previously been shown to use an amino acid called aspartate as a source of amine groups, is indispensable if the cell is to use the amine groups from other amino acids ­ including histidine, tyrosine, phenylalanine, tryptophan, methionine, isoleucine and leucine. Schulz-Mirbach et al. also discovered that if they engineered the E. coli cells to produce transaminases from other species, the repertoire of molecules that the cells could use as the source of amines to generate glutamate increased. In a final set of experiments, Schulz-Mirbach et al. were able to engineer the cells to fix ammonium by producing aspartate and leucine, thus entirely bypassing the deleted routes of glutamate synthesis. These data suggest that fixing ammonium and distributing nitrogen in E. coli can be very flexible. The results from these experiments may shed light on how cells adapt when there is not a lot of ammonium available. Moreover, this study could advance efforts at metabolic engineering, for example, to create molecules through new pathways or to boost the production of amino acids needed for industrial purposes.


Assuntos
Compostos de Amônio , Escherichia coli , Aminação , Aminas/metabolismo , Aminoácidos/metabolismo , Compostos de Amônio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Glutâmico/metabolismo , Transaminases/genética , Transaminases/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193962

RESUMO

Formate has great potential to function as a feedstock for biorefineries because it can be sustainably produced by a variety of processes that don't compete with agricultural production. However, naturally formatotrophic organisms are unsuitable for large-scale cultivation, difficult to engineer, or have inefficient native formate assimilation pathways. Thus, metabolic engineering needs to be developed for model industrial organisms to enable efficient formatotrophic growth. Here, we build a prototype synthetic formate utilizing bacterial microcompartment (sFUT) encapsulating the oxygen-sensitive glycyl radical enzyme pyruvate formate lyase and a phosphate acyltransferase to convert formate and acetyl-phosphate into the central biosynthetic intermediate pyruvate. This metabolic module offers a defined environment with a private cofactor coenzyme A that can cycle efficiently between the encapsulated enzymes. To facilitate initial design-build-test-refine cycles to construct an active metabolic core, we used a "wiffleball" architecture, defined as an icosahedral bacterial microcompartment (BMC) shell with unoccupied pentameric vertices to freely permit substrate and product exchange. The resulting sFUT prototype wiffleball is an active multi enzyme synthetic BMC functioning as platform technology.


Assuntos
Formiatos/metabolismo , Engenharia Metabólica/métodos , Ácido Pirúvico/metabolismo , Acetatos/química , Acetatos/metabolismo , Acetiltransferases , Bactérias/metabolismo , Compartimento Celular/fisiologia , Escherichia coli/genética , Formiatos/química , Ácido Pirúvico/química , Biologia Sintética/métodos
7.
Biodes Res ; 2022: 9859643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37850128

RESUMO

All living organisms share similar reactions within their central metabolism to provide precursors for all essential building blocks and reducing power. To identify whether alternative metabolic routes of glycolysis can operate in E. coli, we complementarily employed in silico design, rational engineering, and adaptive laboratory evolution. First, we used a genome-scale model and identified two potential pathways within the metabolic network of this organism replacing canonical Embden-Meyerhof-Parnas (EMP) glycolysis to convert phosphosugars into organic acids. One of these glycolytic routes proceeds via methylglyoxal and the other via serine biosynthesis and degradation. Then, we implemented both pathways in E. coli strains harboring defective EMP glycolysis. Surprisingly, the pathway via methylglyoxal seemed to immediately operate in a triosephosphate isomerase deletion strain cultivated on glycerol. By contrast, in a phosphoglycerate kinase deletion strain, the overexpression of methylglyoxal synthase was necessary to restore growth of the strain. Furthermore, we engineered the "serine shunt" which converts 3-phosphoglycerate via serine biosynthesis and degradation to pyruvate, bypassing an enolase deletion. Finally, to explore which of these alternatives would emerge by natural selection, we performed an adaptive laboratory evolution study using an enolase deletion strain. Our experiments suggest that the evolved mutants use the serine shunt. Our study reveals the flexible repurposing of metabolic pathways to create new metabolite links and rewire central metabolism.

8.
mBio ; 12(4): e0032921, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399608

RESUMO

The nicotinamide cofactor specificity of enzymes plays a key role in regulating metabolic processes and attaining cellular homeostasis. Multiple studies have used enzyme engineering tools or a directed evolution approach to switch the cofactor preference of specific oxidoreductases. However, whole-cell adaptation toward the emergence of novel cofactor regeneration routes has not been previously explored. To address this challenge, we used an Escherichia coli NADPH-auxotrophic strain. We continuously cultivated this strain under selective conditions. After 500 to 1,100 generations of adaptive evolution using different carbon sources, we isolated several strains capable of growing without an external NADPH source. Most isolated strains were found to harbor a mutated NAD+-dependent malic enzyme (MaeA). A single mutation in MaeA was found to switch cofactor specificity while lowering enzyme activity. Most mutated MaeA variants also harbored a second mutation that restored the catalytic efficiency of the enzyme. Remarkably, the best MaeA variants identified this way displayed overall superior kinetics relative to the wild-type variant with NAD+. In other evolved strains, the dihydrolipoamide dehydrogenase (Lpd) was mutated to accept NADP+, thus enabling the pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase complexes to regenerate NADPH. Interestingly, no other central metabolism oxidoreductase seems to evolve toward reducing NADP+, which we attribute to several biochemical constraints, including unfavorable thermodynamics. This study demonstrates the potential and biochemical limits of evolving oxidoreductases within the cellular context toward changing cofactor specificity, further showing that long-term adaptive evolution can optimize enzyme activity beyond what is achievable via rational design or directed evolution using small libraries. IMPORTANCE In the cell, NAD(H) and NADP(H) cofactors have different functions. The former mainly accepts electrons from catabolic reactions and carries them to respiration, while the latter provides reducing power for anabolism. Correspondingly, the ratio of the reduced to the oxidized form differs for NAD+ (low) and NADP+ (high), reflecting their distinct roles. We challenged the flexibility of E. coli's central metabolism in multiple adaptive evolution experiments using an NADPH-auxotrophic strain. We found several mutations in two enzymes, changing the cofactor preference of malic enzyme and dihydrolipoamide dehydrogenase. Upon deletion of their corresponding genes we performed additional evolution experiments which did not lead to the emergence of any additional mutants. We attribute this restricted number of mutational targets to intrinsic thermodynamic barriers; the high ratio of NADPH to NADP+ limits metabolic redox reactions that can regenerate NADPH, mainly by mass action constraints.


Assuntos
Coenzimas/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Evolução Molecular , NADP/metabolismo , Oxirredutases/metabolismo , Carbono/metabolismo , Coenzimas/genética , Escherichia coli/genética , Proteínas de Escherichia coli , Cinética , Malato Desidrogenase/metabolismo , NAD/metabolismo , Oxirredutases/genética
9.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34155098

RESUMO

Population growth and changes in dietary patterns place an ever-growing pressure on the environment. Feeding the world within sustainable boundaries therefore requires revolutionizing the way we harness natural resources. Microbial biomass can be cultivated to yield protein-rich feed and food supplements, collectively termed single-cell protein (SCP). Yet, we still lack a quantitative comparison between traditional agriculture and photovoltaic-driven SCP systems in terms of land use and energetic efficiency. Here, we analyze the energetic efficiency of harnessing solar energy to produce SCP from air and water. Our model includes photovoltaic electricity generation, direct air capture of carbon dioxide, electrosynthesis of an electron donor and/or carbon source for microbial growth (hydrogen, formate, or methanol), microbial cultivation, and the processing of biomass and proteins. We show that, per unit of land, SCP production can reach an over 10-fold higher protein yield and at least twice the caloric yield compared with any staple crop. Altogether, this quantitative analysis offers an assessment of the future potential of photovoltaic-driven microbial foods to supplement conventional agricultural production and support resource-efficient protein supply on a global scale.


Assuntos
Proteínas de Bactérias/biossíntese , Produtos Agrícolas/crescimento & desenvolvimento , Energia Solar , Luz Solar , Animais , Proteínas na Dieta/metabolismo , Transferência de Energia , Humanos
10.
Nat Commun ; 11(1): 5812, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199707

RESUMO

Carbon fixation is one of the most important biochemical processes. Most natural carbon fixation pathways are thought to have emerged from enzymes that originally performed other metabolic tasks. Can we recreate the emergence of a carbon fixation pathway in a heterotrophic host by recruiting only endogenous enzymes? In this study, we address this question by systematically analyzing possible carbon fixation pathways composed only of Escherichia coli native enzymes. We identify the GED (Gnd-Entner-Doudoroff) cycle as the simplest pathway that can operate with high thermodynamic driving force. This autocatalytic route is based on reductive carboxylation of ribulose 5-phosphate (Ru5P) by 6-phosphogluconate dehydrogenase (Gnd), followed by reactions of the Entner-Doudoroff pathway, gluconeogenesis, and the pentose phosphate pathway. We demonstrate the in vivo feasibility of this new-to-nature pathway by constructing E. coli gene deletion strains whose growth on pentose sugars depends on the GED shunt, a linear variant of the GED cycle which does not require the regeneration of Ru5P. Several metabolic adaptations, most importantly the increased production of NADPH, assist in establishing sufficiently high flux to sustain this growth. Our study exemplifies a trajectory for the emergence of carbon fixation in a heterotrophic organism and demonstrates a synthetic pathway of biotechnological interest.


Assuntos
Ciclo do Carbono , Escherichia coli/metabolismo , Adaptação Fisiológica , Simulação por Computador , Escherichia coli/enzimologia , Fermentação , Cinética , Mutação/genética , Oxirredução , Açúcares/metabolismo
11.
Elife ; 92020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33084575

RESUMO

Many photosynthetic organisms employ a CO2 concentrating mechanism (CCM) to increase the rate of CO2 fixation via the Calvin cycle. CCMs catalyze ≈50% of global photosynthesis, yet it remains unclear which genes and proteins are required to produce this complex adaptation. We describe the construction of a functional CCM in a non-native host, achieved by expressing genes from an autotrophic bacterium in an Escherichia coli strain engineered to depend on rubisco carboxylation for growth. Expression of 20 CCM genes enabled E. coli to grow by fixing CO2 from ambient air into biomass, with growth in ambient air depending on the components of the CCM. Bacterial CCMs are therefore genetically compact and readily transplanted, rationalizing their presence in diverse bacteria. Reconstitution enabled genetic experiments refining our understanding of the CCM, thereby laying the groundwork for deeper study and engineering of the cell biology supporting CO2 assimilation in diverse organisms.


Assuntos
Dióxido de Carbono/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Genômica , Halothiobacillus/genética , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
12.
Nat Commun ; 11(1): 5090, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037220

RESUMO

Six CO2 fixation pathways are known to operate in photoautotrophic and chemoautotrophic microorganisms. Here, we describe chemolithoautotrophic growth of the sulphate-reducing bacterium Desulfovibrio desulfuricans (strain G11) with hydrogen and sulphate as energy substrates. Genomic, transcriptomic, proteomic and metabolomic analyses reveal that D. desulfuricans assimilates CO2 via the reductive glycine pathway, a seventh CO2 fixation pathway. In this pathway, CO2 is first reduced to formate, which is reduced and condensed with a second CO2 to generate glycine. Glycine is further reduced in D. desulfuricans by glycine reductase to acetyl-P, and then to acetyl-CoA, which is condensed with another CO2 to form pyruvate. Ammonia is involved in the operation of the pathway, which is reflected in the dependence of the autotrophic growth rate on the ammonia concentration. Our study demonstrates microbial autotrophic growth fully supported by this highly ATP-efficient CO2 fixation pathway.


Assuntos
Desulfovibrio desulfuricans/crescimento & desenvolvimento , Desulfovibrio desulfuricans/metabolismo , Glicina/metabolismo , Trifosfato de Adenosina/metabolismo , Amônia/metabolismo , Processos Autotróficos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Desulfovibrio desulfuricans/genética , Perfilação da Expressão Gênica , Genoma Bacteriano , Metabolômica
13.
Metab Eng ; 62: 30-41, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32805426

RESUMO

Formate can be directly produced from CO2 and renewable electricity, making it a promising microbial feedstock for sustainable bioproduction. Cupriavidus necator is one of the few biotechnologically-relevant hosts that can grow on formate, but it uses the Calvin cycle, the high ATP cost of which limits biomass and product yields. Here, we redesign C. necator metabolism for formate assimilation via the synthetic, highly ATP-efficient reductive glycine pathway. First, we demonstrate that the upper pathway segment supports glycine biosynthesis from formate. Next, we explore the endogenous route for glycine assimilation and discover a wasteful oxidation-dependent pathway. By integrating glycine biosynthesis and assimilation we are able to replace C. necator's Calvin cycle with the synthetic pathway and achieve formatotrophic growth. We then engineer more efficient glycine metabolism and use short-term evolution to optimize pathway activity. The final growth yield we achieve (2.6 gCDW/mole-formate) nearly matches that of the WT strain using the Calvin Cycle (2.9 gCDW/mole-formate). We expect that further rational and evolutionary optimization will result in a superior formatotrophic C. necator strain, paving the way towards realizing the formate bio-economy.


Assuntos
Cupriavidus necator , Glicina , Biomassa , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Glicina/metabolismo , Fotossíntese
14.
Elife ; 92020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32831171

RESUMO

The promiscuous activities of enzymes provide fertile ground for the evolution of new metabolic pathways. Here, we systematically explore the ability of E. coli to harness underground metabolism to compensate for the deletion of an essential biosynthetic pathway. By deleting all threonine deaminases, we generated a strain in which isoleucine biosynthesis was interrupted at the level of 2-ketobutyrate. Incubation of this strain under aerobic conditions resulted in the emergence of a novel 2-ketobutyrate biosynthesis pathway based upon the promiscuous cleavage of O-succinyl-L-homoserine by cystathionine γ-synthase (MetB). Under anaerobic conditions, pyruvate formate-lyase enabled 2-ketobutyrate biosynthesis from propionyl-CoA and formate. Surprisingly, we found this anaerobic route to provide a substantial fraction of isoleucine in a wild-type strain when propionate is available in the medium. This study demonstrates the selective advantage underground metabolism offers, providing metabolic redundancy and flexibility which allow for the best use of environmental carbon sources.


Assuntos
Butiratos/metabolismo , Carbono-Oxigênio Liases/metabolismo , Escherichia coli/metabolismo , Deleção de Genes , Homosserina/análogos & derivados , Isoleucina/metabolismo , Escherichia coli/genética , Homosserina/metabolismo , Redes e Vias Metabólicas
15.
Proc Natl Acad Sci U S A ; 117(36): 22452-22461, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32820073

RESUMO

Carbon fixation via the Calvin cycle is constrained by the side activity of Rubisco with dioxygen, generating 2-phosphoglycolate. The metabolic recycling of phosphoglycolate was extensively studied in photoautotrophic organisms, including plants, algae, and cyanobacteria, where it is referred to as photorespiration. While receiving little attention so far, aerobic chemolithoautotrophic bacteria that operate the Calvin cycle independent of light must also recycle phosphoglycolate. As the term photorespiration is inappropriate for describing phosphoglycolate recycling in these nonphotosynthetic autotrophs, we suggest the more general term "phosphoglycolate salvage." Here, we study phosphoglycolate salvage in the model chemolithoautotroph Cupriavidus necator H16 (Ralstonia eutropha H16) by characterizing the proxy process of glycolate metabolism, performing comparative transcriptomics of autotrophic growth under low and high CO2 concentrations, and testing autotrophic growth phenotypes of gene deletion strains at ambient CO2 We find that the canonical plant-like C2 cycle does not operate in this bacterium, and instead, the bacterial-like glycerate pathway is the main route for phosphoglycolate salvage. Upon disruption of the glycerate pathway, we find that an oxidative pathway, which we term the malate cycle, supports phosphoglycolate salvage. In this cycle, glyoxylate is condensed with acetyl coenzyme A (acetyl-CoA) to give malate, which undergoes two oxidative decarboxylation steps to regenerate acetyl-CoA. When both pathways are disrupted, autotrophic growth is abolished at ambient CO2 We present bioinformatic data suggesting that the malate cycle may support phosphoglycolate salvage in diverse chemolithoautotrophic bacteria. This study thus demonstrates a so far unknown phosphoglycolate salvage pathway, highlighting important diversity in microbial carbon fixation metabolism.


Assuntos
Crescimento Quimioautotrófico/fisiologia , Glicolatos/metabolismo , Fotossíntese/fisiologia , Acetilcoenzima A/metabolismo , Proteínas de Bactérias/metabolismo , Ciclo do Carbono/fisiologia , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Malato Sintase/metabolismo , Malatos/metabolismo , Oxirredução
16.
ACS Catal ; 10(14): 7512-7525, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32733773

RESUMO

The efficient regeneration of cofactors is vital for the establishment of biocatalytic processes. Formate is an ideal electron donor for cofactor regeneration due to its general availability, low reduction potential, and benign byproduct (CO2). However, formate dehydrogenases (FDHs) are usually specific to NAD+, such that NADPH regeneration with formate is challenging. Previous studies reported naturally occurring FDHs or engineered FDHs that accept NADP+, but these enzymes show low kinetic efficiencies and specificities. Here, we harness the power of natural selection to engineer FDH variants to simultaneously optimize three properties: kinetic efficiency with NADP+, specificity toward NADP+, and affinity toward formate. By simultaneously mutating multiple residues of FDH from Pseudomonas sp. 101, which exhibits practically no activity toward NADP+, we generate a library of >106 variants. We introduce this library into an E. coli strain that cannot produce NADPH. By selecting for growth with formate as the sole NADPH source, we isolate several enzyme variants that support efficient NADPH regeneration. We find that the kinetically superior enzyme variant, harboring five mutations, has 5-fold higher efficiency and 14-fold higher specificity in comparison to the best enzyme previously engineered, while retaining high affinity toward formate. By using molecular dynamics simulations, we reveal the contribution of each mutation to the superior kinetics of this variant. We further determine how nonadditive epistatic effects improve multiple parameters simultaneously. Our work demonstrates the capacity of in vivo selection to identify highly proficient enzyme variants carrying multiple mutations which would be almost impossible to find using conventional screening methods.

17.
Biotechnol Bioeng ; 117(11): 3422-3434, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32658302

RESUMO

An efficient in vivo regeneration of the primary cellular resources NADH and ATP is vital for optimizing the production of value-added chemicals and enabling the activity of synthetic pathways. Currently, such regeneration routes are tested and characterized mainly in vitro before being introduced into the cell. However, in vitro measurements could be misleading as they do not reflect enzyme activity under physiological conditions. Here, we construct an in vivo platform to test and compare NADH regeneration systems. By deleting dihydrolipoyl dehydrogenase in Escherichia coli, we abolish the activity of pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase. When cultivated on acetate, the resulting strain is auxotrophic to NADH and ATP: acetate can be assimilated via the glyoxylate shunt but cannot be oxidized to provide the cell with reducing power and energy. This strain can, therefore, serve to select for and test different NADH regeneration routes. We exemplify this by comparing several NAD-dependent formate dehydrogenases and methanol dehydrogenases. We identify the most efficient enzyme variants under in vivo conditions and pinpoint optimal feedstock concentrations that maximize NADH biosynthesis while avoiding cellular toxicity. Our strain thus provides a useful platform for comparing and optimizing enzymatic systems for cofactor regeneration under physiological conditions.


Assuntos
Técnicas Biossensoriais/métodos , Escherichia coli , NAD/metabolismo , Trifosfato de Adenosina/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Metabolismo Energético/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Etanol/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Modelos Biológicos
18.
Biochem J ; 477(9): 1745-1757, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32301498

RESUMO

Formaldehyde (HCHO) is a reactive carbonyl compound that formylates and cross-links proteins, DNA, and small molecules. It is of specific concern as a toxic intermediate in the design of engineered pathways involving methanol oxidation or formate reduction. The interest in engineering these pathways is not, however, matched by engineering-relevant information on precisely why HCHO is toxic or on what damage-control mechanisms cells deploy to manage HCHO toxicity. The only well-defined mechanism for managing HCHO toxicity is formaldehyde dehydrogenase-mediated oxidation to formate, which is counterproductive if HCHO is a desired pathway intermediate. We therefore sought alternative HCHO damage-control mechanisms via comparative genomic analysis. This analysis associated homologs of the Escherichia coli pepP gene with HCHO-related one-carbon metabolism. Furthermore, deleting pepP increased the sensitivity of E. coli to supplied HCHO but not other carbonyl compounds. PepP is a proline aminopeptidase that cleaves peptides of the general formula X-Pro-Y, yielding X + Pro-Y. HCHO is known to react spontaneously with cysteine to form the close proline analog thioproline (thiazolidine-4-carboxylate), which is incorporated into proteins and hence into proteolytic peptides. We therefore hypothesized that certain thioproline-containing peptides are toxic and that PepP cleaves these aberrant peptides. Supporting this hypothesis, PepP cleaved the model peptide Ala-thioproline-Ala as efficiently as Ala-Pro-Ala in vitro and in vivo, and deleting pepP increased sensitivity to supplied thioproline. Our data thus (i) provide biochemical genetic evidence that thioproline formation contributes substantially to HCHO toxicity and (ii) make PepP a candidate damage-control enzyme for engineered pathways having HCHO as an intermediate.


Assuntos
Endopeptidases , Escherichia coli , Formaldeído/metabolismo , Prolina/metabolismo , Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Formaldeído/toxicidade , Genes Bacterianos , Genoma Bacteriano , Tiazolidinas/metabolismo
19.
EMBO Rep ; 21(4): e50273, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32227414

RESUMO

Chemicals synthesized directly from CO2 are a sustainable alternative to fossil fuels. Increasing efficiency and specificity will require a combination of chemical and biological processes.


Assuntos
Dióxido de Carbono , Carbono , Catálise , Fermentação , Combustíveis Fósseis
20.
Metab Eng ; 60: 1-13, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32169542

RESUMO

Engineering biotechnological microorganisms to use methanol as a feedstock for bioproduction is a major goal for the synthetic metabolism community. Here, we aim to redesign the natural serine cycle for implementation in E. coli. We propose the homoserine cycle, relying on two promiscuous formaldehyde aldolase reactions, as a superior pathway design. The homoserine cycle is expected to outperform the serine cycle and its variants with respect to biomass yield, thermodynamic favorability, and integration with host endogenous metabolism. Even as compared to the RuMP cycle, the most efficient naturally occurring methanol assimilation route, the homoserine cycle is expected to support higher yields of a wide array of products. We test the in vivo feasibility of the homoserine cycle by constructing several E. coli gene deletion strains whose growth is coupled to the activity of different pathway segments. Using this approach, we demonstrate that all required promiscuous enzymes are active enough to enable growth of the auxotrophic strains. Our findings thus identify a novel metabolic solution that opens the way to an optimized methylotrophic platform.


Assuntos
Aldeído Liases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Formaldeído/metabolismo , Engenharia Metabólica/métodos , Metanol/metabolismo , Biomassa , Genes Bacterianos/genética , Glicina Hidroximetiltransferase/metabolismo , Homosserina/metabolismo , Redes e Vias Metabólicas , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...